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The  magnetization  of  a GdMn6Sn6 single  crystal  has  been  measured  in static  magnetic  fields  up to  14  T
as  well  as in  pulsed  fields  up to  60 T. The  easy  magnetization  direction  has  been  confirmed  to  lie in  the
basal  plane  of  the hexagonal  crystal,  the  anisotropy  within  the  plane  being  negligible.  However,  our  data
ccepted 6 December 2011
vailable online 8 January 2012
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do  not  corroborate  the  earlier  assertion  that GdMn6Sn6 is  a collinear  ferrimagnet.  This  disagrees  with  the
observed  field  dependence  of magnetization  along  the  easy  direction  as  well  as  with  the temperature
dependence  of spontaneous  magnetization.  A way  out  of the  contradiction  is to  admit  that  GdMn6Sn6

has  a more  complex,  non-collinear  magnetic  structure.
errimagnetism
agnetic anisotropy

. Introduction

The RMn6Sn6 compounds (R = Sc, Y, Gd-Tm, Lu) form a class
f materials with the hexagonal HfFe6Ge6-type structure (space
roup P6/mmm).  The lattice consists of R, Mn  and Sn close-packed
ayers alternating along the c-axis. The R and Mn  atoms occupy the
b and 6i sites, respectively, while the Sn atoms occupy three crys-
allographic sites: 2c, 2d and 2e. The magnetic properties of these
ompounds have been extensively studied by various experimental
echniques [1–7]. In particular, neutron diffraction studies revealed
hat the magnetic structures of RMn6Sn6 with non-magnetic R
R = Sc, Y, and Lu [8–10]) as well as with R = Er [2] and Tm [11] are
ncommensurate within certain temperature intervals. As opposed
o that, the compounds with R = Gd, Tb, Dy, and Ho were found
o be collinear ferrimagnets everywhere below their Curie points
1–3,5]. The magnetocrystalline anisotropy of RMn6Sn6 is deter-

ined by competing contributions from the Mn and R sublattices,
hich leads in a number of cases to spin-reorientation transitions

1–3,6,7].
Gadolinium occupies a special place among the lanthanides.

ne the one hand, it is a magnetic rare earth, and a heavy one
s well. That is, it has a magnetic moment of its own and this
oment in intermetallic compounds couples antiparallelly to the

oments of the 3d elements. On the other hand, Gd does not

ontribute much to magnetic anisotropy; in this sense it is more
ike a non-magnetic rare earth, Y or Lu. Therefore GdMn6Sn6

∗ Corresponding author. Tel.: +420 221 912 735.
E-mail address: andreev@mag.mff.cuni.cz (A.V. Andreev).

925-8388/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2011.12.016
© 2011 Elsevier B.V. All rights reserved.

is of particular interest: it should have much in common with
the collinear ferrimagnets TbMn6Sn6, DyMn6Sn6 and HoMn6Sn6
and, at the same time, with the complex spiral antiferromagnets
YMn6Sn6 and LuMn6Sn6. Although GdMn6Sn6 has been classified
as a collinear ferrimagnet [2],  this was done only on the basis of
neutron powder diffractograms. There are still unclear points about
its magnetic properties. Thus, the spontaneous moment at low
temperatures is variously found to be between 5 and 6.5 �B/f.u.
[1,2,5–7,12]. A yet higher value, Ms = 8.5 �B/f.u., is obtained if the
atomic moments found in Ref. [2] are summed up according to
the notion of two antiparallel sublattices stated therein. By con-
trast, the Curie temperatures from various sources, 435–442 K
[1,2,4], are in reasonable agreement. The Mn sublattice displays
an easy-plane anisotropy in the entire temperature interval below
TC [2,4,7,13].  The anisotropy constants K1 and K2 were estimated to
be −1.1 MJ/m3 and 0.225 MJ/m3, respectively [7].  The anisotropy in
the basal plane was  found to be small [5].

In this work the magnetic properties of GdMn6Sn6 are reex-
amined. Magnetization measurements are carried out on a single
crystal in static magnetic fields up to 14 T as well as in pulsed mag-
netic fields up to 60 T (Sections 2 and 3). The measurements are
complemented with electronic structure calculations (Section 4).
An attempted quantitative interpretation of the results on the basis
of a two-sublattice model is reported in Section 5, followed by a
conclusion, Section 6.
2. Experimental details

The GdMn6Sn6 single crystals were synthesized by the tin flux
method following the growth of previously synthesized RMn6Sn6

dx.doi.org/10.1016/j.jallcom.2011.12.016
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:andreev@mag.mff.cuni.cz
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TC = 441 K. The temperature dependence of Ms will be discussed
further below.

As seen in Fig. 2, the magnetization curve along the hard axis c
exhibits no spontaneous projection and is almost linear up to about
ig. 1. Back-scattering Laue pattern of a GdMn6Sn6 single crystal with primary X-ray
eam along the c axis.

ompounds [3,14].  A mixture of the metals with an overall atomic
atio GdMn6Sn20 was put into alumina crucibles and sealed into sil-
ca tubes under high vacuum (∼10−6 mbar). The system was quickly
eated up to 1373 K, where it was stabilized for 3 h, after that it
as slowly (3 K/h) cooled down to room temperature. The crucibles
ere then replaced into a silica ampoule with a quartz wool plug,
eated up to 833 K and centrifugated to separate the Sn flux. The
emaining Sn was etched from the surface of the crystals by HCl.
he crystals have the shape of platelets, several (up to 10) mm in
iameter and 0.1–0.3 mm thick, with the c axis perpendicular to
he plate and small misalignment within the basal plane. Some of
hem were pulverized and analyzed by the standard X-ray powder
iffraction, which showed a single-phase state with the hexagonal
fFe6Ge6-type structure. The lattice parameters, a = 0.5537 nm and

 = 0.9028 nm,  are in perfect agreement with Ref. [5] and in satis-
actory agreement with other sources [2,15].  Microprobe analysis
onfirmed the 1-6-6 composition and good phase homogeneity.
or the magnetization measurements a good-quality platelet with
ub-grain misorientation less than 2◦ was selected using back-
cattering Laue patterns (Fig. 1).

Magnetization along the principal crystallographic axes was
easured in static magnetic fields up to 14 T at temperatures

etween 4.2 and 450 K using a commercial magnetometer (Quan-
um Design PPMS) as well as in pulsed magnetic fields up to
0 T using the high-field facility at Dresden–Rossendorf. A detailed
escription of the pulsed-field magnetometer was published else-
here [16].

. Experimental results

Fig. 2 shows the magnetization curves of the GdMn6Sn6 single
rystal measured along the principal axes at 4.2 K. The compound
xhibits the easy-plane type of magnetic anisotropy, the c axis
eing the hard magnetization direction. We  did not observe any
nisotropy within the easy plane, the magnetization curve along
he [1 2 0] axis (or the b axis in the orthorhombic coordinates) is
he same as that along the a axis. In Ref. [5] a tiny anisotropy within
he easy plane was observed, the a axis being the easiest direction,
he b-axis curve showed a slightly (3.5%) lower spontaneous com-
onent than that along the a axis. Since in the case of noticeable

n-plane anisotropy this difference should be about 13%, we  think

hat the difference observed in Ref. [5] was within the experimental
rror of the high-field measurements. Taking into account that our
rystals have no misalignment within the basal plane (which could
artly conceal the in-plane anisotropy), we concluded that this kind
Fig. 2. Magnetization curves of a GdMn6Sn6 single crystal measured in steady mag-
netic fields along the principal axes at T = 4.2 K. The inset shows the same curves in
pulsed magnetic field.

of anisotropy is negligible in GdMn6Sn6 and did not measure M(H)
along the b axis at other temperatures.

The magnetization curves along the easy axis were studied in
detail for a proper determination of the spontaneous moment Ms

by the Arrott method. Figs. 3–5 show the temperature evolution of
the curves. The obtained Ms value is 6.2 �B at 4.2 K, which falls in
the middle of the scattering range in the literature. Assuming that
the Gd moment equals its free-ion value, �Gd = 7 �B, and that the
Gd and Mn  sublattice moments are collinear and antiparallel, the
average magnetic moment per Mn  atom is �Mn = 2.2 �B. A slight
(<3.5%) initial increase of Ms below 200 K (Fig. 3) turns to a mono-
tonic decrease at elevated (Fig. 4) and high (Fig. 5) temperatures.
The Arrott plots in the vicinity of the Curie point (Fig. 6) show that
Fig. 3. Temperature evolution of the magnetization curve measured along the a axis
at T = 4.2–340 K.
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branches.
Fig. 4. The same as Fig. 3, for T = 360–424 K.

 T. The c-axis magnetization crosses the easy-direction curve at
 T and continues to grow, albeit more slowly. The temperature
volution of the c-axis magnetization curve with gradual decrease
f magnetic anisotropy is shown in Fig. 7.

The inset of Fig. 2 displays the magnetization curves along the a
nd c axes in pulsed magnetic fields. One observes a considerable
rowth of magnetization in both directions, but the growth along
he hard axis slows down above 20 T, so that the two  curves are
xpected to intersect once again at about 90 T.

. Density functional calculations

We used Version 9.00 of the full-potential local-orbital (FPLO)
rogram [17] in the scalar-relativistic mode. All structural parame-
ers were fixed at their experimental values taken from Ref. [2].

he exchange and correlation potential was taken either in the
orm proposed by Perdew and Wang [18], hereinafter referred to
s LSDA (local spin density approximation) or, alternatively, in the

Fig. 5. The same as Fig. 3, for T = 426–446 K.
Fig. 6. Belov–Arrott plots in vicinity of TC.

generalized gradient approximation (GGA [19]). The mesh in recip-
rocal space consisted of 133 points within the irreducible wedge of
the Brillouin zone. All other settings were left at their default val-
ues. The basis valence states included 3spd, 4spd and 5s of Mn,  4spd,
5spd and 6sp of Sn, as well as 4f, 5spdf, 6spd and 7s of Gd. The 4f shell
of Gd was  treated within the LSDA+U (atomic limit) formalism [20].

The exchange field on Gd Bex was determined by carrying out
a series of total energy calculations within the fixed-spin-moment
approach [21]. Depending on the initial conditions, a calculation for
a given total spin moment may  converge to either a ferrimagnetic
(MGd ↑↓ MMn) or a ferromagnetic (MGd ↑↑ MMn) state. The corre-
sponding two  branches of the total energy versus spin moment
dependence are shown in Fig. 8 as the solid and dashed curves,
respectively. According to the method stated and applied to GdCo5
in Ref. [22], Bex equals the slope of a common tangent line of both
The calculations presented in Fig. 8 were carried out in
LSDA+U with U = 6 eV (Slater’s integrals: F0 = 6 eV, F2 = F4 = F6 = 0)
and resulted in Bex = 263 T. Taking U = 8 eV led to a slightly higher

Fig. 7. Temperature evolution of the magnetization curve measured along the c axis.
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Fig. 8. Total energy calculated in LSDA+U as a function of fixed spin moment. The
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Fig. 9. Temperature dependence of the first K1 and second K2 anisotropy constants
olid and dashed curves correspond to the ferri- (MGd ↑↓ MMn) and ferromagnetic
MGd ↑↑ MMn) solutions, respectively.

alue, Bex = 264 T. However, using GGA+U  (U = 6 eV) produced a
uch higher exchange field, Bex = 307 T.

. Discussion

.1. Magnetic anisotropy

Since GdMn6Sn6 is supposed to be a ferrimagnet, a proper
etermination of its magnetic anisotropy from the hard-axis
agnetization curves is complicated because the magnetiza-

ion process involves not only rotation of the total moment,
ut also field-induced non-collinearity of the magnetic sublat-
ices. If one neglects the non-collinearity and uses the classical
ucksmith–Thompson method [23] to determine the anisotropy
onstants, their values are underestimated. Still, it is instructive to
pply this method as a first approximation to obtain quantitative
ata on K1 and K2. The result is plotted against temperature in Fig. 9.
he first anisotropy constant K1 reaches −0.8 MJ/m3 (−14 K/f.u.)
t low temperatures, whereas K2 is very small (<0.05 MJ/m3). For
omparison we also show the data of Ref. [7],  where the magnetic
nisotropy of GdMn6Sn6 was studied on aligned powder above
8 K. One can see that the K2 of Ref. [7] is 5 times larger than ours;
lso their K1 is about 25% larger in magnitude than ours. How-
ver, the Ms values of Ref. [7] agree well with our data, and so does
he anisotropy energy, Ea = K1 + K2, see Fig. 9. We  suggest that the
trong curvature of the c-axis magnetization curve attributed in [7]
o K2 (which in turn affected the K1 value obtained therein) orig-
nates mainly from imperfect alignment of the powder. Even our
mall K2 seems to be an artifact of misalignment because it does
ot show the usual rapid decrease with temperature. We  therefore
onclude that the anisotropy of GdMn6Sn6 can be described by K1
lone.

Moreover, to a good approximation the anisotropy constant K1
an be ascribed entirely to the Mn  sublattice. A possible contribu-
ion of Gd could be ∼0.4 K/atom, as inferred from Gd metal [24,25],
nd originates predominantly from the 5d sates of Gd, neglected in

ur model (see Appendix A). Given that the total anisotropy con-
tant of GdMn6Sn6 is much higher, K1 = −14 K/f.u., the anisotropy
f the Gd sublattice will be neglected.
and  the anisotropy energy Ea = K1 + K2. The filled symbols represent results of this
work, the open symbols correspond to Ref. [7].

5.2. Density functional calculations

The exchange field computed using LSDA+U, Bex = 263 T, is about
25% higher than the experimental value, 211 T, found from inelastic
neutron scattering (INS) [26]. It should be noted that the quantity
calculated in Section 4 is the intersublattice (Mn–Gd) exchange
field, whereas the value deduced from the INS data corresponds
to the total exchange field on Gd, which apart from the dominant
Mn–Gd share may  also contain a contribution from the intrasublat-
tice Gd–Gd exchange. The latter is expected to be negligible. Direct
experimental evidence of its smallness exists for GdCo5 [22]. In
GdMn6Sn6, where the Gd sublattice is sparser, the Gd–Gd contri-
bution to Bex should be yet smaller than in GdCo5. It is neglected in
the following discussion.

The estimated numerical errors of our calculations (due to the
inexact knowledge of U, limited number of basis states and/or mesh
points etc.) are too small to account for the disagreement with
the experiment. Speculating about the reasons of the discrepancy,
one should name two possible sources: (i) the inaccuracy of the
LSDA+U itself and (ii) the hypothesis of spin collinearity, which is
the basis of the calculations of Section 4. Neither of the two sources
of error can be quantified within the means at our disposal. An
estimate of the error of the LSDA+U would require a calculation
using an a priori more accurate approximation. (GGA+U cannot be
regarded as such, see below.) A rough idea can be inferred from a
comparison with GdCo5: there LSDA+U calculations [22] yielded a
10% higher value than INS [27], 258 T vs. 236 T. Similarly overesti-
mated values were computed for GdCo4B [28]. The overestimation
in GdMn6Sn6 is by as much as 25%, that is considerably more than
either in GdCo5 or in GdCo4B. Yet we are unable to say at this stage
whether the extra discrepancy can be attributed to a hypotheti-
cal non-collinear magnetic structure in GdMn6Sn6. It is quite clear
though, that a non-collinearity within the Mn  sublattice would lead
to a reduction of the exchange field on Gd. Anyhow, this is not but
speculation, as long as the true magnetic structure of GdMn6Sn6
remains unknown.

Incidentally, a calculation carried out in a similar fashion, but
using GGA+U, yielded for GdMn6Sn6 a yet higher exchange field,

Bex = 307 T, that is a 45% overestimation of the INS value [26]. In a
test GGA + U calculation for GdCo5 we  obtained a value 24% too high,
Bex = 292 T, which is again much worse than the LSDA + U result.
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Fig. 11. Calculated reduced magnetization versus reduced magnetic field for
m = 0.53. The dashed curve was produced using Eqs. (A11) and (A12) with � = −0.05.
The reduced quantities are defined in Eq. (A2) of Appendix A.

total spontaneous magnetization Ms(T). However, experimentally
Ms(T) experiences a slight growth at low temperatures, in direct
contradiction with the model. We  are compelled to conclude that
ig. 10. Temperature dependence of spontaneous magnetization Ms. The filled cir-
les are experimental data, the solid curve is a fit to Eqs. (1)–(4).

Thus, our LSDA + U calculations overestimate considerably the
xchange field in GdMn6Sn6: Bex = 263 T, as compared to 211 T from
NS [26]. A value significantly less than 211 T can be ruled out at this
oint.

.3. Spontaneous magnetization

An attempt at a quantitative description was undertaken using
 model earlier proposed for a collinear ferrimagnet Gd2Fe14B [29].
he model regards the Gd sublattice as a paramagnet subject to an
xchange field Bex produced by the 3d sublattice,

s(T) = MMn(T) − 7�BB7/2(x) (1)

ere B7/2(x) is the usual Brillouin function for S = 7/2

7/2(x) = 8
7

coth
(

8
7

x
)

− 1
7

coth
(

1
7

x
)

, (2)

nd

 = 7�BBex(0)
kT

MMn(T)
MMn(0)

(3)

he use of the Brillouin function is justified by the fact that Gd –
nlike other lanthanides – has practically no orbital moment and

s little affected by the crystal field.
The temperature dependence of the manganese sublattice

oment is given by [30],

Mn(T) = MMn(0)

[
1 − s

(
T

TC

)3/2
− (1 − s)

(
T

TC

)p
]1/3

(4)

here TC = 441 K is the Curie temperature, s and p are phenomeno-
ogical constants. The best-fit values of the adjustable parameters
re as follows:

 = 0.53, p = 6, MMn(0) = 13.45�B/f.u. (5)

ote that the low-temperature value of the exchange field on Gd
s no disposable parameter, since it is reliably known from INS,
ex(0) = 211 T [26]. The resulting fit is shown in Fig. 10 (solid line).
here are two reasons for being dissatisfied with the fit. Firstly, p is

nusually large. Most ferromagnets have p = 5/2, which is the stan-
ard spin-wave value, iron being the only known exception with

 = 4 [30]. Still, p = 6 could be accepted, taking into consideration
he rather special character of the Mn  sublattice in GdMn6Sn6, with
Fig. A.1. Orientation of the magnetization vectors of the two sublattices with respect
to  the applied magnetic field. All vectors lie in the same plane.

its preference for antiferromagnetic order (cf. YMn6Sn6 [8,9]). Sec-
ondly – and this is unacceptable – the model clearly contradicts the
experiment at low temperatures. The disagreement cannot reme-
died by simply adjusting MMn(0) to 13.2 �B/f.u. The point is that,
according to Eqs. (2) and (3),  the magnetization of the Gd  sub-
lattice changes exponentially little at low temperatures since the
latter sees a very large exchange field, Bex(0) = 211 T. As against that,
the moment of the Mn  sublattice decreases with temperature fol-
lowing the 3/2 power law of Bloch [cf. Eq. (4)] and so does the
Fig. A.2. The h� phase diagram for m = 0 53. The phase boundaries are second-order
phase transition lines.
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Fig. A.3. Three archetypal magnetization

he two-sublattice collinear model has failed to account for the
bserved Ms(T).

.4. High-field magnetization curves

Theory makes unequivocal predictions for low-temperature
agnetization curves of two-sublattice ferrimagnets. When

pplied to GdMn6Sn6, where the Mn  sublattice has an easy-plane
nisotropy while the Gd sublattice is essentially isotropic, this
eans that if a magnetic field is applied in the basal plane, the

ublattice moments will stay within the plane, unaffected by the
nisotropy, whatever the field. Therefore, the predicted behavior
f GdMn6Sn6 with H⊥c is that of an isotropic ferrimagnet. The lat-
er is well known since half-a-century ago [31–33].  The theoretical

agnetization curve is piecewise linear, as shown in Fig. 11,  solid
ine. It begins with a horizontal segment, where the magnetization
s independent of magnetic field and equal to the spontaneous mag-
etization. Then comes a sloping part that projects onto the origin,

ollowed by a second, high-field horizontal section. The low-field
art of the curve corresponds to the collinear ferrimagnetic phase,
he intermediate one to the canted phase, and the high-field stretch
orresponds to the forced ferromagnetic phase. When presented in
imensionless coordinates, as in Fig. 11,  the shape of the curve for a
iven sublattice moments ratio m, Eq. (A2), does not depend on any
urther model parameters. Fig. 11 was produced assuming m = 0.53,
s appropriate for GdMn6Sn6.

Let now the field be applied along the 6-fold axis c of GdMn6Sn6.
his time the anisotropy of the Mn  sublattice does play a role.
ccording to the findings of Section 5.1,  it can be described by
ne second-order anisotropy constant. If the system is a two-
ublattice ferrimagnet, the predictions of the model developed in
he Appendix must be valid. In particular, the magnetization curve
ith H‖c must be given by Eqs. (A11) and (A12) and depend, for a

nown m, on a single parameter �, � < 0. Moreover, the presence of
 salient ‘knee’ in the experimental magnetization curve enables us
o say with certainty that � must be about −0.05, i.e. just below the
ritical value, �V = −0.037, given by Eq. (A9) with m = 0.53. Indeed,

 cannot be greater than �V, because if it were, the magnetization
urve would contain a horizontal segment as in Fig. A.3b. Nor could

 be much lower than �V because then the characteristic ‘knee’
ould be all but gone (cf. Fig. A.3a). On the whole, the calculated

urves for H‖c do agree with the experiment qualitatively. It should
e noted, however, that the most gently-sloping part of the theoret-

cal curves is level with the spontaneous magnetization (which is
nity in Fig. 11),  whereas in the experiment it lies at ∼9 �B/f.u., i.e.
ignificantly higher than the observed Ms = 6.2 �B/f.u. For a quan-
itative agreement, one would need to postulate the existence of a

atent spontaneous moment ∼9 �B/f.u. and to explain why it is so

uch higher than the apparent Ms.
As regards the magnetization along the a axis, there is not even

 qualitative agreement between the two-sublattice model and the
s calculated using Eqs. (A11) and (A12).

experiment. The most prominent feature in the calculated curve is
lack of magnetization growth across a broad interval of magnetic
fields. The field-independence is a consequence of the stability of
a perfectly collinear spin structure, where the dominant sublat-
tice moment is parallel to the applied field H and the subdominant
moment is antiparallel to H. Any misalignment of the moments
in the ground state would expose them to torque on the part of
magnetic field and thus inevitably lead to magnetization growth by
way of field-induced moment canting. This is just what is observed
experimentally.

A further difficulty arises when one attempts to determine the
intersublattice exchange field in GdMn6Sn6 from the position of
the so-called orthogonality point in the magnetization curves, i.e.
a point where the smaller sublattice moment (MGd) is perpendic-
ular to the applied magnetic field. In a two-sublattice ferrimagnet
this is a crossing-point of magnetization curves measured in differ-
ent high-symmetry crystal directions [34]. The coordinates of this
point are related through a simple expression, H⊥ = �M⊥, where �
is the intersublattice exchange constant. Neglecting the relatively
weak anisotropy of the Mn  sublattice, the orthogonality magne-
tization can be estimated as follows [34]: M⊥ =

√
M2

Mn − M2
Gd =

11.2 �B/f.u. The orthogonality point can thus be identified as the
second crossing-point of the two  curves in the inset of Fig. 2 located
at �0H⊥ = 88 T, M⊥ = 11.1 �B/f.u., as found by extrapolation. Hence
for the intersublattice exchange field on Gd we obtain Bex = �0H⊥
MMn/M⊥ = 105 T. This number is far too small. It is hard to rec-
oncile either with the twice higher INS value, Bex = 211 T [26], or
with the LSDA+U result of Section 4, which is 2.5 times as high
(263 T). Yet, even this too small number, Bex = �MMn = 105 T, taken
in conjunction with MMn = 13.2 �B/f.u. and � = −0.05, leads to K1 =
�M2

Mn� = −2.7 MJ/m3, that is 3 times the value obtained by the
Sucksmith–Thompson technique.

Summarizing the subsection, our high-field magnetization
data admit of no interpretation compatible with the notion that
GdMn6Sn6 might be a collinear two-sublattice ferrimagnet. Rather,
they are suggestive of a more complex non-collinear magnetic
structure, where the moments of Gd and Mn  are approximately
antiparallel and lie in the basal plane.

6. Conclusion

The present study of the magnetic properties of a single crystal
of GdMn6Sn6 does not confirm the existence therein of collinear
ferrimagnetism, as surmised previously from powder neutron
diffraction spectra [2].  We  find in particular that the two-sublattice
model fails to reproduce either the low-temperature easy-axis
magnetization curve or the temperature dependence of the spon-

taneous magnetization of GdMn6Sn6. The intersublattice exchange
field determined from the orthogonality point in the magnetization
curves equals 105 T. On the one hand, this is too little, only one-half
of what was deduced from inelastic neutron scattering [26] and as
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ittle as 40% of the result of our own LSDA+U calculations. On the
ther hand, 105 T proves to be far too much, over three times more
han could be expected from the ratio of the anisotropy constant
1, found by the Sucksmith-Thompson technique, and the dimen-
ionless anisotropy parameter �, determined from the shape of the
agnetization curve along the six-fold symmetry axis.
Our results suggest a more complex magnetic structure where

he spins lie in the basal plane. To resolve the encountered contra-
ictions, a polarized neutron diffraction study on a single crystal is
ighly desirable.
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ppendix A. Ferrimagnet with an anisotropic dominant
ublattice

Consider a model system consisting of two magnetic sublattices
ith magnetic moments M1 and M2. Without loss of general-

ty it can be postulated that the first sublattice is the dominant
ne, i.e. that M1 > M2. With a view to making the model rele-
ant to GdMn6Sn6 we assume that the dominant sublattice is
ndowed with magnetic anisotropy of second order, whereas
he subdominant sublattice is isotropic. We  restrict ourselves
o low temperatures and regard both sublattices as saturated,
M1,2| = const. The thermodynamic potential of the system can be
resented as follows:

 = �M1M2 cos(  ̨ + ˇ) − M1H cos  ̨ − M2H cos  ̌ + K sin2
 ̨ (A1)

ere � is an intersublattice exchange constant (� > 0),  ̨ and  ̌ are
he angles between applied magnetic field H and the sublattice

oments M1 and M2, respectively (see Fig. A.1), K is the relevant
nisotropy constant. It is implicit in Eq. (A1) that the field is applied
n a high-symmetry direction within the crystal, yet no restriction
as been placed on the symmetry itself. In particular, it can be as low
s monoclinic. If the symmetry is uniaxial, K = K1 when the applied
eld is parallel to the symmetry axis and K = −K1 when the field

s perpendicular to that axis, K1 being the conventional anisotropy
onstant. For further analysis it is convenient to introduce dimen-
ionless variables,

 = ˚

�M2
1

, h = H

�M1
, m = M2

M1
, � = K

�M2
1

, (A2)

nd rewrite Eq. (A1) as follows:

 = m cos(  ̨ + ˇ) − h cos  ̨ − mh cos  ̌ + � sin2
 ̨ (A3)

inimizing ϕ(˛,ˇ) for a given field h, one finds equilibrium values of
he orientation angles ˛ and ˇ, and hence reduced magnetization,

 = cos  ̨ + m cos ˇ

1 − m
(A4)

he quantity � is normalized to unity in a weak field applied in
n easy magnetization direction (� > 0,  ̨ → 0,  ̌ → �). The magne-
ization curves �(h) depend on two model parameters, m and �.
y definition, 0 < m < 1. Moreover, for a given substance the ratio
f the sublattice moments m is usually known. Thus, m = 0.53 for

dMn6Sn6. As against that, the anisotropy parameter � is generally
nknown a priori. An overview of all possible types of behavior for

 given m is provided by a phase diagram in the plane h� (Fig. A.2).
There are three magnetic phases in all.
d Compounds 519 (2012) 47– 54 53

1. Ferrimagnetic. This exists in two  varieties: (i) longitudinal,  ̨ = 0,
 ̌ = �, � = 1, stable in the north-west corner of Fig. A.2, and (ii)

transverse,  ̨ =  ̌ = �/2, � = 0, stable at h → 0, � < 0. In any event,
the system is ferrimagnetic in the absence of an external field.

2. Ferromagnetic,  ̨ =  ̌ = 0, � = (1 + m)/(1–m). This phase occupies
the north-east and east parts of Fig. A.2. It is always stable in a
sufficiently strong magnetic field.

3. Canted. Here the angles  ̨ and  ̌ take no fixed special values, but
rather depend on the field h. They can be determined from the
following conditions for equilibrium:

−m sin(  ̨ + ˇ) + h sin  ̨ + � sin 2˛ = 0
−m sin(  ̨ + ˇ) + mh sin  ̌ = 0

(A5)

The phase boundaries in Fig. A.2 can be found by linearizing Eq. (A5)
as  ̨ → 0:

(∓m + h + 2�)  ̨ − m� = 0
∓m  ̨ + m(h − 1)�  = 0

(A6)

Here and in Eq. (A7) the upper sign corresponds to the bound-
ary ‘canted-ferro’,  ̌ = � → 0, and the lower one to ‘canted-ferri’,

 ̌ = �–�, � → 0. Demanding that the determinant of the simul-
taneous linear Eq. (A6) equal zero, one arrives at the following
equations for the phase separation lines (hyperbolae):

� = h

2

( ±m

h − 1
− 1

)
(A7)

The coordinates of the vertex V are obtained from an obvious con-
dition, d�/dh = 0 (with the lower sign):

hV = 1 − √
m (A8)

�V = −1
2

(
1 − √

m
)2

(A9)

The shape of the magnetization curve �(h) is determined essentially
by the anisotropy parameter �. There are three possibilities in this
respect.

a) A large negative �, � < �V. The magnetization curve consists of
a horizontal and a sloping part (corresponding, respectively, to
the ferromagnetic and the canted phase). In order to calculate
the non-trivial sloping section of the curve, it is convenient to
introduce an auxiliary quantity,

t = 2 cos ˛

h
(A10)

and then express h from the conditions for equilibrium (A5),
eliminating  ̨ and ˇ:

h = 1
1 + �t

√
m2 − (1 + �t)2

1 − t
(A11)

The reduced magnetization (A4) is recast as follows:

� = h

1 − m

(
1 + �t − 1

2
�t2

)
(A12)

Eqs. (A11) and (A12) provide a parametric description of the
sloping part of the curve in Fig. A.3a. The parameter t runs from
t3 to t0. At the upper end of the interval,

t0 = m − 1
(A13)
�

the numerator of the radicand in Eq. (A11) vanishes, therefore,
t0 corresponds to the origin in Fig. A.3a. The lower bound t3 cor-
responds to saturation,  ̨ → 0 and by Eq. (A10) t3 = 2/h3, where



5 loys an

(

(

R

[

[
[

[

[

[

[

[
[
[
[
[
[

[
[

[
[

[

[

[
[
[

4 D.I. Gorbunov et al. / Journal of Al

h3 is the saturation field as obtained by solving for h Eq. (A7)
with the upper sign. Thus

t3 = 4

1 + m − 2� +
√

(1 + m − 2�)2 + 8�
(A14)

The transition to saturation is a second-order phase transition
and is manifested by a kink in the magnetization curve. In
the phase diagram of Fig. A.2 the magnetization process cor-
responds to motion along a horizontal line, a kink occurring
every time a phase boundary is crossed. As long as � < �V, a single
crossing takes place.

b) For a small negative �, �V < � < 0, the magnetization curve is as
shown in Fig. A.3b. The curve set by the parametric Eqs. (A11)
and (A12) has an N-shaped anomaly between t2 and t1

t1,2 = 4

1 − m − 2� ∓
√

(1 − m − 2�)2 + 8�
(A15)

Within that interval the canted phase is either unstable or
metastable, while the stable phase is ferrimagnetic, � ≡ 1. Eq.
(A15) for the bounds of the interval is derived quite similarly to
Eq. (A14), only Eq. (A7) should be taken with the lower sign. In
the phase diagram of Fig. A.2 the reentrant transition to ferri-
magnetism corresponds to a double crossing of the hyperbolic
arc just above the point V.

c) If � is positive (Fig. A.3c), the interval of stability of the ferrimag-
netic phase extends down to h = 0. The magnetization curves
have two horizontal portions and a sloping one. The latter is
described by Eqs. (A11) and (A12) with t3 < t < t2. The curves
have two kinks corresponding to crossing the two hyperbolae
in the upper part of Fig. A.2.
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10] K. Uhlířová, V. Sechovsky, F.R. de Boer, S. Yoshii, T. Yamamoto, M. Hagiwara, C.

Lefèvre, G. Venturini, J. Magn. Magn. Mater. 310 (2007) 1747.
11] C. Lefèvre, G. Venturini, B. Malaman, J. Alloys Compd. 346 (2002) 84.
12] J.H.V.J. Brabers, G.F. Zhou, J.H.P. Colpa, K.H.J. Buschow, F.R. de Boer, Physica B

202 (1994) l.
13] M.W. Dirken, R.C. Thiel, J.H.V.J. Brabers, F.R. de Boer, K.H.J. Buschow, J. Alloys

Compd. 177 (1991) L11.
14] A. Matsuo, K. Suga, K. Kindo, L. Zhang, E. Brück, K.H.J. Buschow, F.R. de Boer, C.

Lefèvre, G. Venturini, J. Alloys Compd. 408 (2005) 110.
15] S.T. Yazdi, N. Tajabor, M.  Behdani, M.R. Roknabadi, D.S. Khoshnoud, F. Pourarian,

J.  Magn. Magn. Mater. 323 (2011) 2070.
16] Y. Skourski, M.D. Kuz’min, K.P. Skokov, A.V. Andreev, J. Wosnitza, Phys. Rev. B

83 (2011) 214420.
17] K. Koepernik, H. Eschrig, Phys. Rev. B 59 (1999) 1743, http://www.FPLO.de.
18] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
19] J.P. Perdew, K. Burke, M.  Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
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